An Introduction to
Problem Solving and Programming

ANS

Recursion

Chapter 11

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savi
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights

Objectives

Describe the concept of recursion
Use recursion as a programming tool

Describe and use recursive form of
binary search algorithm

Describe and use merge sort algorithm

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Basics of Recursion: Outline

Basics of Recursion

Case Study: Digits to Words

How Recursion Works

Infinite Recursion

Recursive versus lterative Methods
Recursive Methods that Return a Value

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Basics of Recursion

* A recursive algorithm will have one
subtask that is a small version of the entire
algorithm's task

* A recursive algorithm contains an
invocation of itself

* Must be defined correctly else algorithm
could call itself forever or not at all

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Simple Example - Countdown

» Given an integer value num output all the
numbers from num down to 1

» Can do this easier and faster with a loop;
the recursive version is an example only

* First handle the simplest case; the base
case or stopplng condition

public static void countDown(int num)
{
i (num <= 0)
{
System.out.println();

}
}

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Recursive Countdown

* Next handle larger cases; phrase solution
In terms of a smaller version of the same

problem

- countDown (3) IS to output 3 then output
the result of countbDown (2)

View demonstration, listing 11.1
class RecursionCountdown

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

countDown(3);-——.~\\& 3

S e l | e n Ce Of (pubh'c static void countDown(int'num)\
¢ if (num <= 0)

{

System.out.printinQ);

}
else
{
a I I S System.out.print(num);
countDown(num - 1); =\
} -\
}

_)\2

. . . .7
(>pub11c static void countDown(int num)‘\

{

countDown (3) i (um <0

System.out.printin(Q);

Console Output
321

}
else
System.out.print(num); ~
countDown(num - 1);
. }
N 1
('pub1ic static void countDown(int num;\

if (num <= 0)

{
System.out.printin();
}
else
{

System.out.print(num);

countDown(num - 1);
| B
}
N \0

(

. - - T
public static void countDown(int num)\

if (num <= 0)

{
System.out.printinQ);

}

else

{
System.out.print(num);
countDown(num - 1);

}

}
g

JAVA: An Introduction to Problem Solving & Programming, 6% Ed.
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River

Case Study

 Digits to Words — consider a method which
receives an integer parameter

= Then it prints the digits of the number as
words

* Heading

Precondition: number >= 0
Displays the digits in number as words.

public static void displayAsWords(int number)

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Case Study

» Consider this useful private method

// Precondition: 0 <= digit <= 9
// Returns the word for the argument digit.
private static String getWordFromDigit(int digit)

JAVA: An Introduction to Problem Solving & Programming, 6" Ed y
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper SaddIeRi

Case Study

 If number has multiple digits, decompose
algorithm into two subtasks

1. Display all digits but the last as words
2. Display last digit as a word
* First subtask is smaller version of original
problem
= Same as original task, one less digit

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Case Study

 Algorithm for
displayAsWords (number)

1.displayAsWords (humber after deleting
last digits)

2.System.out.print

(getWordFromDigit(last digit of number
+ n ")

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved d

Case Study

* View demonstration, listing 11.2
class RecursionDemo

Enter an integer:
987

The digits in that number are:
nine eight seven

If you add ten to that number,
the digits in the new number are:
nine nine seven

JAVA: An Introduction to Problem Solving & Programming, " E
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle R

How Recursion Works

* Figure 11.2a Executing recursive call

displayAsWords (987) is equivalent to executing:

{//Code for invocation of displayAsWords(987)
1t (987 < 10)
System.out.print(getWordFromDigit(987) + " ");
else //987 has two or more digits Computation waits

{ here for the completion
displayAswWords(987 / 10); / of the recursive call.

System.out.print(getWordFromDigit(987 % 10) + " ");

}

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savi '
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights

How Recursion Works
* Figure 11.2b Executing recursive call

displayAsWords (987/10) is equivalent to displayAsWords(98), whichis
equivalent to executing:

{//Code for invocation of displayAsWords(98)
if (98 < 10)
System.out.print(getWordFromDigit(98) + " ");
else //98 has two or more digits Computation waits

{ here for the completion

displayAsiords(98 / 10); o ofthe recursive call.
System.out.print(getWordFromDigit(98 % 10) + " ");

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights R

How Recursion Works

* Figure 11.2c Executing recursive call

displayAsWords(98/10) is equivalent to displayAsWords(9), whichis
equivalent to executing:

{//Code for invocation of displayAsWords(9)
if (9 < 10)
System.out.print(getWordFromDigit(9) + " ");
else //9 has two or more digits
{ Another recursive call
displayAsWords(9 / 10); Goesnotoceur
System.out.print(getWordFromDigit(9 % 10) + " ");

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights R

Keys to Successful Recursion

* Must have a branching statement that
leads to different cases

 One or more of the branches should have
a recursive call of the method

= Recursive call must us "smaller” version of the
original argument
* One or more branches must include no
recursive call
= This is the base or stopping case

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Infinite Recursion

* Suppose we leave out the stopping case

public static void displayAsWords(int number)//Not quite right

{
dispTlayAsWords (number / 10);

System.out.print(getWordFromDigit(number % 10) + " ");
}

* Nothing stops the method from repeatedly
Invoking itself

= Program will eventually crash when computer
exhausts its resources (stack overflow)

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Recursive Versus lterative

* Any method including a recursive call can be
rewritten

= To do the same task
= Done without recursion

* Non recursive algorithm uses iteration
= Method which implements is iterative method

* Note iterative version of program, listing 11.3
class IterativeDemo

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Recursive Versus lterative

 Recursive method

= Uses more storage space than iterative
version

= Due to overhead during runtime
= Also runs slower

 However in some programming tasks,
recursion IS a better choice, a more
elegant solution

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Recursive Methods that Return a Value

* Follow same design guidelines as stated
previously

« Second guideline also states

= One or more branches includes recursive
Invocation that leads to the returned value

* View program with recursive value
returning method, listing 11.4
class RecursionDemo2

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Recursive Methods that Return a Value

Enter a nonnegative number:
2008
2008 contains 2 zeros.

* Note recursive method NumberOfZeros
= Has two recursive calls
= Each returns value assigned to result
= Variable result is what is returned

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved ‘

Programming with Recursion: Outline

* Programming Example: Insisting that User
Input Be Correct

» Case Study: Binary Search

* Programming Example: Merge Sort — A
Recursive Sorting Method

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Programming Example

* Insisting that user input be correct
= Program asks for a input in specific range
= Recursive method makes sure of this range

= Method recursively invokes itself as many
times as user gives incorrect input

« Dangerous technique — can result in stack overflow
iIf invalid entries entered repeatedly

* View program, listing 11.5
class CountDown

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Programming Example

Enter a positive integer:
0

Input must be positive.
Try again.

Enter a positive integer:
3

Counting down:

3, 2, 1, 0, Blast Off!

JAVA: An Introduction to Problem Solving & Programmi !
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper

Case Study

* Binary Search

= \We design a recursive method to tell whether
or not a given number is in an array

= Algorithm assumes array is sorted

* First we look in the middle of the array

= Then look in first half or last half, depending
on value found in middle

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Binary Search

* Draft 1 of algorithm

m = anindex between O and (a.length — 1)
. 1f (target == a[m])
returnm;
. else 1f (target < a[m])
return the result of searching a[0] through a[m — 1]
. else if (target > a[m])
return the result of searchinga[m + 1] through ala.length — 1]

N AW~

= Algorithm requires additional parameters

JAVA: An Introduction to Problem Solving & Programming, 6" Ed. By Walter Savitch ,
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Binary Search

Draft 2 of algorithm to search a[first]
through a[last]

1. mid = approximate midpoint between firstand last
. if (target == a[mid])

3 return mid

4. else if (target < a[mid])

5. return the result of searching a[first] through a[mid — 1]
6. else if (target > a[mid])

7. return the result of searching a[mid + 1] througha[Tast]

= What if target is not in the array?

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Binary Search

 Final draft of algorithm to search
a[first] through a[last] to find
target

. else 1f (target > a[mid])

mid = approximate midpoint between firstand 1ast
1f (first > last)
return -1

. else if (target == a[mid])

return mid

. else if (target < a[mid])

return the result of searching a[first] through a[mid — 1]

return the result of searching a[mid + 1] througha[last]

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Binary Search

Figure 11.3a Binary search example

targetis 33

Eliminate half of the array elements:

0 1 2 3 4 5 6 7

5 7 9 13 32 33 42 54

56

88

wn =

mid = (0 + 9)/2 (whichis 4).
33> a[mid] (thatis, 33 > a[4]).
So if 33 is in the array, 33 is one of

al[5],a[6],al[7], a[8], a[9].

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch

ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All nght

Binary Search

Figure 11.3b Binary search example

Eliminate half of the remaining array elements:

s

5 6 7 8 9
33 42 54 56 88

mid = (5 + 9)/2 (whichis 7).
33 <al[mid] (thatis,33 <a[7]).
So if 33 is in the array, 33 is one of

a[5], a[6].

LM

JAVA: An Introduction to Problem Solving & Programming, 6" Ed. By Walter S Vi
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. AII

Binary Search

* Figure 11.3c Binary search example

Eliminate half of the remaining array elements:

mid
5 6
33 42

1. mid = (5 + 6)/2 (whichis5).
2. 33equals a[mid], so we found 33 at index 5.

33 found in a[5].

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walte
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All

Binary Search

* View final code, listing 11.6
class ArraySearcher

* Note demo program, listing 11.7
class ArraySearcherDemo

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Binary Search

Fnter 10 inteaers in increasina order.
Again?

yes

Enter a value to search for:
0

0 1is at index 0O

Again?

yes

Enter a value to search for:
2

2 is at index 1

Again?

yes

Enter a value to search for:
13

13 1is not in the array.
Again?

no

May you find what you’re searching for.

JAVA: An Introduction to Problem Solving & Programming N
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Sad

Programming Example

* Merge sort — A recursive sorting method

* A divide-and-conquer algorithm
= Array to be sorted is divided in half
= The two halves are sorted by recursive calls

= This produces two smaller, sorted arrays
which are merged to a single sorted array

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Merge Sort

 Algorithm to sort array a

1. Ifthe array a has only one element, do nothing (base case).
Otherwise, do the following (recursive case):

Copy the first half of the elements in a to a smaller array named 1 rstHalf.

Copy the rest of the elements in the array a to another smaller array named 1astHalf.
Sort the array 1 rstHalf using a recursive call.

Sort the array 1astHalf using a recursive call.

Merge the elements in the arrays firstHalf and 1astHalf into the array a.

OO e W

* View Java implementation, listing 11.8
class MergeSort

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch o
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Merge Sort

* View demo program, listing 11.9
class MergeSortDemo

Array values before sorting:
75112 16 4 18 14 12 30
Array values after sorting:
2457 11 12 14 16 18 30

JAVA: An Introduction to Problem Solving & Programming, 6" Ed. I
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle Ri

Summary

« Method with self invocation
» |nvocation considered a recursive call

* Recursive calls
= Legal in Java
= Can make some method definitions clearer
 Algorithm with one subtask that is smaller
version of entire task
= Algorithm is a recursive method

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Summary

 To avoid infinite recursion recursive
method should contain two kinds of cases

= A recursive call
= A base (stopping) case with no recursive call

* Good examples of recursive algorithms
= Binary search algorithm
= Merge sort algorithm

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

