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Objectives

Describe the concept of recursion
Use recursion as a programming tool

Describe and use recursive form of
binary search algorithm

Describe and use merge sort algorithm

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved



Basics of Recursion: Outline

Basics of Recursion

Case Study: Digits to Words

How Recursion Works

Infinite Recursion

Recursive versus lterative Methods
Recursive Methods that Return a Value
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Basics of Recursion

* A recursive algorithm will have one
subtask that is a small version of the entire
algorithm's task

* A recursive algorithm contains an
invocation of itself

* Must be defined correctly else algorithm
could call itself forever or not at all
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Simple Example - Countdown

» Given an integer value num output all the
numbers from num down to 1

» Can do this easier and faster with a loop;
the recursive version is an example only

* First handle the simplest case; the base
case or stopplng condition

public static void countDown(int num)
{
i (num <= 0)
{
System.out.println();

}
}
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Recursive Countdown

* Next handle larger cases; phrase solution
In terms of a smaller version of the same

problem

- countDown (3) IS to output 3 then output
the result of countbDown (2)

View demonstration, listing 11.1
class RecursionCountdown
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Case Study

 Digits to Words — consider a method which
receives an integer parameter

= Then it prints the digits of the number as
words

* Heading

Precondition: number >= 0
Displays the digits in number as words.

public static void displayAsWords(int number)
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Case Study

» Consider this useful private method

// Precondition: 0 <= digit <= 9
// Returns the word for the argument digit.
private static String getWordFromDigit(int digit)
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Case Study

 If number has multiple digits, decompose
algorithm into two subtasks

1. Display all digits but the last as words
2. Display last digit as a word
* First subtask is smaller version of original
problem
= Same as original task, one less digit
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Case Study

 Algorithm for
displayAsWords (number)

1.displayAsWords (humber after deleting
last digits)

2.System.out.print

(getWordFromDigit(last digit of number
+ n ")
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Case Study

* View demonstration, listing 11.2
class RecursionDemo

Enter an integer:
987

The digits in that number are:
nine eight seven

If you add ten to that number,
the digits in the new number are:
nine nine seven
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How Recursion Works

* Figure 11.2a Executing recursive call

displayAsWords (987) is equivalent to executing:

{//Code for invocation of displayAsWords(987)
1t (987 < 10)
System.out.print(getWordFromDigit(987) + " ");
else //987 has two or more digits Computation waits

{ here for the completion
displayAswWords(987 / 10); / of the recursive call.

System.out.print(getWordFromDigit(987 % 10) + " ");

}
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How Recursion Works
* Figure 11.2b Executing recursive call

displayAsWords (987/10) is equivalent to displayAsWords(98), whichis
equivalent to executing:

{//Code for invocation of displayAsWords(98)
if (98 < 10)
System.out.print(getWordFromDigit(98) + " ");
else //98 has two or more digits Computation waits

{ here for the completion

displayAsiords(98 / 10); o ofthe recursive call.
System.out.print(getWordFromDigit(98 % 10) + " ");

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights R



How Recursion Works

* Figure 11.2c Executing recursive call

displayAsWords(98/10) is equivalent to displayAsWords(9), whichis
equivalent to executing:

{//Code for invocation of displayAsWords(9)
if (9 < 10)
System.out.print(getWordFromDigit(9) + " ");
else //9 has two or more digits
{ Another recursive call
displayAsWords(9 / 10); Goesnotoceur
System.out.print(getWordFromDigit(9 % 10) + " ");
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Keys to Successful Recursion

* Must have a branching statement that
leads to different cases

 One or more of the branches should have
a recursive call of the method

= Recursive call must us "smaller” version of the
original argument
* One or more branches must include no
recursive call
= This is the base or stopping case
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Infinite Recursion

* Suppose we leave out the stopping case

public static void displayAsWords(int number)//Not quite right

{
dispTlayAsWords (number / 10);

System.out.print(getWordFromDigit(number % 10) + " ");
}

* Nothing stops the method from repeatedly
Invoking itself

= Program will eventually crash when computer
exhausts its resources (stack overflow)
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Recursive Versus lterative

* Any method including a recursive call can be
rewritten

= To do the same task
= Done without recursion

* Non recursive algorithm uses iteration
= Method which implements is iterative method

* Note iterative version of program, listing 11.3
class IterativeDemo
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Recursive Versus lterative

 Recursive method

= Uses more storage space than iterative
version

= Due to overhead during runtime
= Also runs slower

 However in some programming tasks,
recursion IS a better choice, a more
elegant solution
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Recursive Methods that Return a Value

* Follow same design guidelines as stated
previously

« Second guideline also states

= One or more branches includes recursive
Invocation that leads to the returned value

* View program with recursive value
returning method, listing 11.4
class RecursionDemo2
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Recursive Methods that Return a Value

Enter a nonnegative number:
2008
2008 contains 2 zeros.

* Note recursive method NumberOfZeros
= Has two recursive calls
= Each returns value assigned to result
= Variable result is what is returned
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Programming with Recursion: Outline

* Programming Example: Insisting that User
Input Be Correct

» Case Study: Binary Search

* Programming Example: Merge Sort — A
Recursive Sorting Method
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Programming Example

* Insisting that user input be correct
= Program asks for a input in specific range
= Recursive method makes sure of this range

= Method recursively invokes itself as many
times as user gives incorrect input

« Dangerous technique — can result in stack overflow
iIf invalid entries entered repeatedly

* View program, listing 11.5
class CountDown
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Programming Example

Enter a positive integer:
0

Input must be positive.
Try again.

Enter a positive integer:
3

Counting down:

3, 2, 1, 0, Blast Off!
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Case Study

* Binary Search

= \We design a recursive method to tell whether
or not a given number is in an array

= Algorithm assumes array is sorted

* First we look in the middle of the array

= Then look in first half or last half, depending
on value found in middle
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Binary Search

* Draft 1 of algorithm

m = anindex between O and (a.length — 1)
. 1f (target == a[m])
returnm;
. else 1f (target < a[m])
return the result of searching a[0] through a[m — 1]
. else if (target > a[m])
return the result of searchinga[m + 1] through ala.length — 1]

N AW~

= Algorithm requires additional parameters
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Binary Search

Draft 2 of algorithm to search a[first]
through a[last]

1. mid = approximate midpoint between firstand last
. if (target == a[mid])

3 return mid

4. else if (target < a[mid])

5. return the result of searching a[ first] through a[mid — 1]
6. else if (target > a[mid])

7. return the result of searching a[mid + 1] througha[Tast]

= What if target is not in the array?
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Binary Search

 Final draft of algorithm to search
a[first] through a[last] to find
target

. else 1f (target > a[mid])

mid = approximate midpoint between firstand 1ast
1f (first > last)
return -1

. else if (target == a[mid])

return mid

. else if (target < a[mid])

return the result of searching a[ first] through a[mid — 1]

return the result of searching a[mid + 1] througha[last]
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Binary Search

Figure 11.3a Binary search example

targetis 33

Eliminate half of the array elements:

0 1 2 3 4 5 6 7

5 7 9 13 32 33 42 54

56

88

wn =

mid = (0 + 9)/2 (whichis 4).
33> a[mid] (thatis, 33 > a[4]).
So if 33 is in the array, 33 is one of

al[5],a[6],al[7], a[8], a[9].

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch

ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All nght




Binary Search

Figure 11.3b Binary search example

Eliminate half of the remaining array elements:

s

5 6 7 8 9
33 42 54 56 88

mid = (5 + 9)/2 (whichis 7).
33 <al[mid] (thatis,33 <a[7]).
So if 33 is in the array, 33 is one of

a[5], a[6].

LM
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Binary Search

* Figure 11.3c Binary search example

Eliminate half of the remaining array elements:

mid
5 6
33 42

1. mid = (5 + 6)/2 (whichis5).
2. 33equals a[mid], so we found 33 at index 5.

33 found in a[5].
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Binary Search

* View final code, listing 11.6
class ArraySearcher

* Note demo program, listing 11.7
class ArraySearcherDemo
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Binary Search

Fnter 10 inteaers in increasina order.
Again?

yes

Enter a value to search for:
0

0 1is at index 0O

Again?

yes

Enter a value to search for:
2

2 is at index 1

Again?

yes

Enter a value to search for:
13

13 1is not in the array.
Again?

no

May you find what you’re searching for.
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Programming Example

* Merge sort — A recursive sorting method

* A divide-and-conquer algorithm
= Array to be sorted is divided in half
= The two halves are sorted by recursive calls

= This produces two smaller, sorted arrays
which are merged to a single sorted array
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Merge Sort

 Algorithm to sort array a

1. Ifthe array a has only one element, do nothing (base case).
Otherwise, do the following (recursive case):

Copy the first half of the elements in a to a smaller array named 1 rstHalf.

Copy the rest of the elements in the array a to another smaller array named 1astHalf.
Sort the array 1 rstHalf using a recursive call.

Sort the array 1astHalf using a recursive call.

Merge the elements in the arrays firstHalf and 1astHalf into the array a.

OO e W

* View Java implementation, listing 11.8
class MergeSort
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Merge Sort

* View demo program, listing 11.9
class MergeSortDemo

Array values before sorting:
75112 16 4 18 14 12 30
Array values after sorting:
2457 11 12 14 16 18 30
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Summary

« Method with self invocation
» |nvocation considered a recursive call

* Recursive calls
= Legal in Java
= Can make some method definitions clearer
 Algorithm with one subtask that is smaller
version of entire task
= Algorithm is a recursive method
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Summary

 To avoid infinite recursion recursive
method should contain two kinds of cases

= A recursive call
= A base (stopping) case with no recursive call

* Good examples of recursive algorithms
= Binary search algorithm
= Merge sort algorithm
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